Enduring Medial Perforant Path Short-Term Synaptic Depression at High Pressure
نویسندگان
چکیده
The high pressure neurological syndrome develops during deep-diving (>1.1 MPa) involving impairment of cognitive functions, alteration of synaptic transmission and increased excitability in cortico-hippocampal areas. The medial perforant path (MPP), connecting entorhinal cortex with the hippocampal formation, displays synaptic frequency-dependent-depression (FDD) under normal conditions. Synaptic FDD is essential for specific functions of various neuronal networks. We used rat cortico-hippocampal slices and computer simulations for studying the effects of pressure and its interaction with extracellular Ca(2+) ([Ca(2+)](o)) on FDD at the MPP synapses. At atmospheric pressure, high [Ca(2+)](o) (4-6 mM) saturated single MPP field EPSP (fEPSP) and increased FDD in response to short trains at 50 Hz. High pressure (HP; 10.1 MPa) depressed single fEPSPs by 50%. Increasing [Ca(2+)](o) to 4 mM at HP saturated synaptic response at a subnormal level (only 20% recovery of single fEPSPs), but generated a FDD similar to atmospheric pressure. Mathematical model analysis of the fractions of synaptic resources used by each fEPSP during trains (normalized to their maximum) and the total fraction utilized within a train indicate that HP depresses synaptic activity also by reducing synaptic resources. This data suggest that MPP synapses may be modulated, in addition to depression of single events, by reduction of synaptic resources and then may have the ability to conserve their dynamic properties under different conditions.
منابع مشابه
Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat.
We examined the characteristics of heterosynaptic long-term depression (LTD) and depotentiation of previously established long-term potentiation (LTP) in the medial and lateral entorhinal afferents to the dentate gyrus in the awake rat. Rats were prepared for chronic recording of dentate gyrus evoked potentials to activation of the medial and lateral perforant paths. This study in awake rats co...
متن کاملModulation of rat corticohippocampal synaptic activity by high pressure and extracellular calcium: single and frequency responses.
High pressure (>1.5 MPa) induces a series of disturbances of the nervous system that are generically termed high-pressure nervous syndrome (HPNS). HPNS is characterized by motor and cognitive impairments. The neocortex and the hippocampus are presumably involved in this last disorder. The medial perforant path (MPP) synapse onto the granule cells of the dentate gyrus is the main connection betw...
متن کاملFimbrial control of bidirectional synaptic plasticity of medial perforant path-dentate transmission.
Lesions of the fimbria-fornix (FF) tract cause profound impairments of cognitive ability in animals. Our previous study showed that spatial performance correlates with long-term potentiation (LTP) of the dentate gyrus (DG), but not of the CA1 region, in rats with bilateral FF lesions, suggesting that FF lesions selectively inhibited LTP in the DG. The cortical input to the DG is anatomically an...
متن کاملPresynaptic group II mGluR inhibition of short-term depression in the medial perforant path of the dentate gyrus in vitro.
Inhibition of short-term plasticity by activation of presynaptic group II metabotropic glutamate receptors (group II mGluR) was investigated in the medial perforant path of the dentate gyrus in the hippocampus in vitro. Brief trains of stimulation (10 stimuli at 1--200 Hz) evoked short-term depression of field excitatory postsynaptic potentials (EPSPs). The steady-state level of depression, mea...
متن کاملEffect of low frequency stimulation of perforant path on kindling acquisition and synaptic transmission in the dentate gyrus in rats
Introduction: Previous studies have been shown that low frequency stimulation (LFS) has an inhibitory effect on kindling acquisition. However, the mechanism of this effect has not been completely determined. In the present study, the effect of LFS of the perforant path on seizures induced by rapid perforant path kindling was investigated. Methods: Animals were kindled by electrical stimulatio...
متن کامل